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Recently, a rigorous renormalization theory for various scalar statistics has been 
developed for special modes of random advection diffusion involving random 
shear layer velocity fields with long-range spatiotemporal correlations. New 
random shearing direction models for isotropic turbulent diffusion are intro- 
duced here. In these models the velocity field has the spatial second-order 
statistics of an arbitrary prescribed stationary incompressible isotropic random 
field including long-range spatial correlations with infrared divergence, but the 
temporal correlations have finite range. The explicit theory of renormalization 
for the mean and second-order statistics is developed here. With e the spectral 
parameter, for - o o  < e < 4  and measuring the strength of the infrared 
divergence of the spatial spectrum, the scalar mean statistics rigorously exhibit 
a phase transition from mean-field behavior for e < 2 to anomalous behavior 
for e with 2 < e < 4 as conjectured earlier by Avellaneda and the author. The 
universal inertial range renormalization for the second-order scalar statistics 
exhibits a phase transition from a covariance with a Gaussian functional form 
for e with e < 2 to an explicit family with a non-Gaussian covariance for e with 
2 < t <4.  These non-Gaussian distributions have tails that are broader than 
Gaussian as t varies with 2 < e < 4  and behave for large values like 
exp(-C~lxl4-c) ,  with C, an explicit constant. Also, here the attractive general 
principle is formulated and proved that every steady, stationary, zero-mean, 
isotropic, incompressible Gaussian random velocity field is well approximated 
by a suitable superposition of random shear layers. 
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1. I N T R O D U C T I O N  

The statistical behavior of a passive scalar T satisfying the advection diffu- 
sion equation 

OT 
O t + O T , + v ) . V T = x A T ,  x e R  d, t>O (1) 

when the velocity field v is incompressible, i.e., div v = 0, and known only 
statistically, is a well-known important practical and theoretical problem 
for turbulent fluid flows, t1'2~ tracers in porous media, 13) etc. The constant 
vector # in (1) represents the mean flow. The problems in (1) are especially 
difficult when the velocity field involves a wide range of spatiotemporal 
scales, and the standard approaches in the physics community involve 
renormalized perturbation theories developed according to various formal 
recipes. (~-3) 

Recently, a rigorous theory of renormalization for various scalar 
statistics has been developed for special models involving simple shear 
layers with turbulent velocity fields having long-range spatiotemporal 
correlations. (4-8) These models are the special case of (1) with the form 

OT 
--~+ ()~+ v~,(x .09, t ) ) - V T =  x AT (2) 

Here o9 is an arbitrary fixed direction on the unit sphere S d-~, if, is a 
constant vector representing the mean flow, and v,o is a shear layer velocity 
field, i.e., 

v,o = P(09) 6(x .09, t) (3) 

with P(09) the matrix projection, P(09) = I -  o9 | 09, and 6 = 
'(~(.~, t) ..... ~d(.~, t)) a vector of random velocity fields in 1 + 1 dimensions 
with suitable long-range correlations. The matrix projection P(09) guaran- 
tees that the velocity field v,o(x.o), t) is incompressible and consists of 
random plane waves involving shear flows. For the special case with d =  2, 
there is a simplified representation for v,o given by 

v,o(x, t) = og "O(x .co, t) (4) 

where ~(.~, t) is a single scalar random field 09• = ( -09 2, cot). 
The purpose of this paper is first to introduce random shearing direc- 

tion models for isotropic turbulent dciffusion. In these models the velocity 
field in (1) has the spatial statistics of an arbitrary stationary, incom- 
pressible, isotropic Gaussian random field including long-range correla- 
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tions with infrared divergence, but the temporal correlations have finite 
range. The renormalization theory for both the mean statistics ( T )  and 
the second-order statistics (T (x  + x', t) T(x', t)) is developed here follow- 
ing refs. 4-6 for the cases with simple shear layers. Here and below, the 
quantity ( . )  denotes averaging over the random velocity statistics. 

The formulas for the renormalization theory for the mean statistics 
developed in Section 3 rigorously confirm the "phase diagrams" for eddy 
diffusivity conjectured in ref. 9 for z = 0, - ~ < e < 4. Here e is the spectral 
parameter measuring the strength of the infrared divergence (4'6'9) (see 
Section 3). With the special assumptions on the velocity spectrum imposed 
for simplicity in Section 4, the universal inertial range renormalization for 
the second-order scalar statistics exhibits a phase transition from a 
covariance with a Gaussian functional form for e with e < 2 to an explicit 
family with a non-Gaussian functional form for e with 2 < e < 4. These 
universal non-Gaussian distributions always have tails that are broader 
than Gaussian as e varies with 2 < e  < 4 and behave like exp( -C~ Ixl 4-~) 
with C~ an explicit constant. Also, through similar considerations, the 
attractive general principle is formulated and proved that every steady, 
stationary, zero-mean, isotropic, incompressible, Gaussian random velocity 
field is well approximated by a suitable superposition of random shear 
layers; these ideas form the theoretical basis for attractive new Monte 
Carlo algorithms for turbulent diffusion with many spatial scales. ('~ 
A complete rigorous renormalization theory for the higher-order scalar 
statistics in the isotropic models exhibiting interesting intermittency correc- 
tions is being developed for these isotropic models along the lines of ref. 6 
for the special case of simple shear layers. These and related ideas will 
be presented elsewhere in other, more lengthy publications by the 
author.(]2-14) 

2. THE BASIC R A N D O M  SHEAR DIRECTION MODELS 

To define the basic random shearing direction models, I consider a 
t ~ in collection of independent identical random velocity fields {vJ(.~, )}j=l 

1 + l dimensions where for each j, the components v~ for 1 ~< i~< d are 
independent, zero-mean, stationary Gaussian random fields, completely 
characterized by the correlation function 

R(.~, t ) =  (v~(x'+~, t+t ')vj(x,  t ' ))=f(t)  cos(27t~z)E(k)dk (5) 

Here E(Tc) is twice the real energy spectrum, f( t)  is a temporal correlation 
structure function, and, by independence, (vJ'vJ23 = 0  for either i t :/:i 2 or 

x i l  i2 - -  
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j~ v~jz. I consider the following two special cases here for simplicity in 
exposition: 

Model A: f ( t )  = 6(t), white noise decorrelation 
(6) 

Model B: f ( t )  = 1, steady velocity fields 

Pick a collection of independent random variables { ogj} which are unit direc- 
tions uniformly distributed on the unit sphere S d- i. With a given correlation 
time to, define an incompressible Gaussian random field v t~ in R d by 

vl'~ t) for ( j - l ) f c < ~ t < j {  c (7) 

The basic random shearing direction models which are discussed here involve 
the advection-diffusion equation in (1) with the random velocity field v I'~ 
in (7). 

Next, I show that the random shear direction velocity fields can be 
constructed to yield the same spatial second-order statistics as a arbitrary 
prescribed stationary, zero-mean, incompressible random velocity field 
through an appropriate choice of  E(k) in (5). Recall <~5) that the second- 
order correlation matrix of an incompressible stationary random field is 
given by 

fR c ~  (~kl)  ( 1 ) ( X + X ' ) |  d A d  P dk 

 sfo - -  

= ~-, cos(2nog.x'[:)E(Tc)P(k)dkdo9 (8) 

with .,4 d the area of S d- 1 and E(lk[ ) a prescribed energy density; in the last 
equality in (8), polar coordinates have been used and ~s~-, denotes the 
normalized integral over the unit sphere. Next, I compute the equal-time 
second-order correlations for the random shearing direction velocity field 
from (7), 

(vl'~ + x ', t)|176 ', t) ) 

= ~s~-' ( P(Og) ~J((x + x').o9, t ) |  P(w) ~J(x' .w, t) ) do9 

= ~-, P(og)ei| cos(2rtx.ogk) E(k)dkdo9 (9) 
i 1 

where (5) has been used in the last equality and {e;}d=~ is the standard 
basis in R d. I claim that the following matrix identity is valid: 

d 

P(w) ei| P(og) e,= P(og) (10) 
i = 1  
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By inserting the identity in (10) in the last equality in (9), one obtains the 
identical formula as given in the last equality in (8). The identity in (10) 
is an elementary exercise for the reader utilizing the fact that P(w) is a 
matrix projection so that P(og) is symmetric and P2(oJ)= P(og). 

2.1. An Important Variation 

I claim that an arbitrary steady, stationary, zero-mean, isotropic, 
incompressible Gaussian random velocity field v(x) is well-approximated by 
a superposition of shear layers. With {13J(x)}~=~ the independent random 
steady velocity fields from (5) for model B, consider the stationary, zero- 
mean, incompressible Gaussian random field v~ "~ formed by a spatial super- 
position of shear layers and given by 

N 

v~u'~ = ~ N - m  P(o~j) ~J(x .ooj) (11) 
j ~ l  

where coj are arbitrary unit directions in S d- 1. By repeating the calcula- 
tions in (8) and (9) without averaging over {wj}, it is a simple matter to 
calculate that the second-order correlation matrices satisfy 

(v~~ + x')|176 >-  (v(x + x')| > 

1 N 
=~j~= F(x,~o,)-~s._ F(x, og)do) (12) 

with F(x, o~)=R(x-co)P(co) and R(s from (5). If the unit directions ogj 
are chosen at random from the uniform distribution on S a-t, the right- 
hand side of (12) converges to zero in absolute value as N increases by the 
law of large numbers; thus the incompressible Gaussian random field 
defined in (11) as a finite superposition of random shear layers converges 
to the incompressible, isotropic Gaussian random field with the second- 
order correlation function in (8) because both are Gaussian random'fields 
and the two-point correlation converge. 

The fact elucidated in the previous paragraph yields a new numerical 
strategy for computing incompressible Gaussian random velocity fields 
with many spatial scales provided one has an efficient numerical algorithm 
for the simple shear layer with many spatial scales and a suitable variance 
reduction algorithm for the direction sampling in (12). Elliott and Majda 
devise such an algorithm with these attractive features for velocity fields 
With infrared divergent spectra in refs. 10 and 11. Furthermore, the method 
readily generalizes to compressible, isotropic Gaussian random velocity 
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fields and there is an explicit convergence theory for the overall algo- 
rithm, t ~  In two space dimensions the algorithm simplifies even further 
through the use of (4). 

3. SCALAR MEAN STATISTICS 

Here I consider the scalar mean statistics (T (x+  ~t, t)) defined in a 
reference frame moving with the mean flow for the problem in (1) with the 
random shear direction velocity field defined in (7). For model A statistics 
with sharp decorrelation in time, the large-scale sweeping effect from ~ will 
be zero, but these effects are nontrivial for model B. 

For the simple shear layer models in (2), the mean statistics are 
exactly solvable for x ~> 0 with explicit formulas in refs. 6 and 7; with the 
random shearing model from (7), the mean statistics for the scalar are 
determined by averaging these formulas over S a- 1. The result is the explicit 
Fourier representation formula for the scalar mean statistics for model A: 
For lic~<t < ( l+  1) fc and any l =  1, 2 ..... 

(T(x+~ret, t)) =fnaeZ~i"k(Mn(k, [c))tMA(k, t-It, .)  f'o(k)dk (13) 

with the Fourier multiplier MA(k, t) given by 

MA(k , t )=exp( -4n  2'kl ' tct);~ e x p l - 4 n ' - R ( 0 )  ] " tiP(co)k[ 2 do~ (14) 
/-I  4 

In (13), 7~o(k) denotes the Fourier transform of the initial data. For model 
B with ~ = 0, there is a similar exact representation formula 18~ for the scalar 
mean statistics for the shear layer with ~ = 0  and ~,~0;  this yields an 
analogous formula to that in (13) with the Fourier multiplier MB(k, t, ~) 
given for d - -2  by 

MB(k,t,~')=~s eXp[-4n2[~o• og,~')]do9 (15) 

with 

~(t ,  co, ~) = �89 R((ff , .o~l)(s-s'))dsds ' (16) 

3.1. Large-Scale Renormalization Theory 

Following refs. 4 and 5, I consider the random shear direction velocity 
fields defined in (5) and (7) with a parametrized family of energy spectra 
given by 

f�89 2 Ikl~-~0~(Ik[), Ikl ~>6 
E~(k) = (0, [kl < 6 (17) 
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and the spectral parameter e varying for - ~  < e < 4 .  Here q'~(Ikl) is a 
smooth, rapidly decreasing ultraviolet cutoff with ~ko~(0)= 1. For e with 
2 < e < 4 there is infrared divergence of energy since R~(0) from (5) satisfies 
R,~(0) --* ~ in this regime. Following refs. 4, 5, and 9, I consider the deter- 
ministic large-scale initial data To(fx ) with fi,~ 1 and seek a nontrivial 
large-time rescaling function p2(fi) so that the mean statistics 

T6(x, t) T - - -  = - -  W p 2 '  (18) 

satisfy a nontrivial equation in the limit fi ~ 0. This is the "eddy diffusivity" 
problem in the model/4,s'91 

For model A it follows from (13) that 

;. ( E t l) T~(x,t)= e2~ixkMA(fk, fc)[t/(P:i~)]MA 5k,~5-i~ - ~  ~'o(k) dk(19) 

To find the time scaling function p(6) and the limiting effective equation 
satisfied by TA(X,t)=limf_oT,s(x,t), I follow the standard Fourier 
analysis proof of the central limit theorem and calculate the behavior of 

exp [ln(MA(fik, t,.)) >2[,.l 

as fi, p'-(fi)~ O. With (14) one computes that 

2 62 1 ln(MA(fk, t',.)) - - - t  - 4 n :  Ikl2t CdR,~(O)~" + o( [ . ] )  (20) 
l- i ,-  

where Cd= �89 ~s~-' IP(~ etl 2 do~. 

3.1.1. The Mean-Field Regime: - o o < E < 2 .  Forewithe<2,  

lim R~(O)=R~(O)= V 2 Iklt-~qj~.~(lkl)dk 
5 4 0  

Thus, with the usual diffusive scaling p(fi)=fi and (19), (20), TA(X, t)----- 
lim~_o T~(x, t) satisfies the renormalized diffusion equation 

0TA 
Ot = [~C+CdR~(O)] ZlTA, TAI,=o = To(x) (21) 
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A similar set of computations with the explicit formulas in (15), (16) for 
model B velocity statistics with p(5)=6 yields the different renormalized 
diffusion equation for ~TB(x, t )=  lim6~o T6(x, t) given by 

dt ~ ~ - - '  TB I = To(x) (22) i.j=J (txidxj t=o 

with the matrix ~s  given by 

~B(r0) = ~ ~s (Og-L | CO'L) ~( 'c ,  O9, ~) dco (23) 

with ~(t ,  co, ~) from (16). In the mean-field regime, in general ~B(~) is an 
anisotropic matrix for a given large-scale mean flow c~2~ ~; thus, the sweep- 
ing effect in model B results in the different anisotropic effective limiting 
equation in (22) as compared with the isotropic equation in (21) for 
model A. 

3.1.2.  The A n o m a l o u s  Regime:  2 < c < 4. For ~ with 2 < ~ < 4, 
where there is infrared divergence of energy, from (I 7) it follows than 

R'5(0) = 62-~ [ V2 1 ~_--Z-~ + o(1) as 6 ~ 0  (24) 

Furthermore, R~(~) satisfies ]R~(.~) - R~(0)I ~< C~ for I.~1 < C~ in the regime 
2 < 5 < 4 .  Thus, (20) and (24) yield the anomalous time rescaling 
p(6) = 62- ~/2 for 2 < ~ < 4 with the effective equation 

OT 
"~=DA. BZtT, Ti t=o= To(x) (25) 

valid for velocity statistics in both models A and B with DA = V2/(~ - 2) 
and DB = t'~DA. In particular, the sweeping effect of the large scales �9 is 
negligible for the velocity statistics from model B in the anomalous regime 
in contrast with the mean-field regime. r 

All of the results in this section provide an elementary but rigorous 
confirmation of the behavior of the renormalized scalar mean statistics for 
isotropic incompressible velocity fields conjectured in ref. 9. 

4. I N E R T I A L  R A N G E  B E H A V I O R  FOR T H E  
S E C O N D - O R D E R  S T A T I S T I C S  

The random shearing direction models provide a convenient 
framework for rigorously justifying ~13'~4~ various explicit equations for 
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renormalized higher-order scalar statistics in the inertial range for isotropic 
turbulent diffusion in parallel to the program from ref. 6 for the simple 
shear layer case with long-range spatial correlations and white noise 
decorrelation in time. Here I briefly discuss this strategy without any 
details for the second-order scalar correlations and then briefly explore the 
implications for inertial range renormalization in a special case. I assume 
that the initial scalar distribution To(x) is a stationary Gaussian random 
field ~6~ with a spectral density which is smooth and rapidly decreasing with 
the unit value at zero. 

The goal here is to derive effective equations and universal scaling 
behavior for the second-order correlations (T (x  + x', t) T(x', t) )=  Q(x, t), 
where the average ( . )  denotes ensemble average over both the random 
initial data and the velocity statistics. For model A velocity statistics and 
x>~0 t6'7) and model B velocity statistics with x = 0 ,  ts~ there are explicit 
closed diffusion equations for the second-order scalar correlations in a 
random simple shear layer. As demonstrated already for the mean statistics 
in (13), such explicit formulas yield an explicit operator-theoretic represen- 
tation for the second-order scalar statistics which can be analyzed rigorously 
in the limit t- c --, 0. ~3"14~ For the moment assume that the velocity spectrum 
E(k) in the random shear direction models from (5) and (7) is bounded 
and rapidly decreasing; then Kurtz's framework for the Trotter product 
formula t~6) can be applied readily t13~ in the limit t- c ---, 0 to yield the diffu- 
sion equation 

OQ(x, t) 
0 - ~  - A((2x + S( Ixl )) O(x, t)), O(x, t)ly=o = Oo(x) (26) 

In (26), S(Ixl) is the isotropic velocity structure function 

S(Ix[) = (]v(x-I-x', t)--V(X, t)[ 2) 

= 2 [1 -- COS(I~x" ogk)] E(k) dk doJ (27) 
- 1  

This argument rigorously justifies a formula of Kraichnan ~m for scalar 
second-order statistics with white noise correlation in time. 

4.1. Inertial Range Renormalization Theory 

Consider the parametrized family of spectra in (17); the inertial range 
consists of those scales smaller than the integral scale, defined by tS-~ in 
(17), and bigger than the dissipation scale, defined in (17) as O(1).through 
the ultraviolet dissipation cutoff ~ ~(Ik]). One expects universal behavior for 
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the second-order scalar statistics on scales associated with wave numbers k, 
satisfying 6 ,~ Ikl '~ I in the high-Reynolds-number limit, 6 ~ 0. (61 

4.1.1. The Mean-Fie ld Regime: - o o < 4 < 2 .  In this regime 
with - ~ < e < 2, the coefficient S~(Ix]) associated with E~(Tc) from (17) 
converges uniformly to the limiting value S'(Ixl) for 6 = 0 ;  it is readily 
justified in this case (~3"t61 that Q~(x, t) converges to Q(x, t), which satisfies 
the equation in (26) with coefficient S'(x). For the inertial range renor- 
malization theory consider the usual large-scale diffusive scaling 
Q~'(x, t )=2-dQ(x/2,  t/22); then Q~'(x, t) satisfies the diffusion equation in 
(26) with variable coefficient S~(txl/2). Because the limiting energy spec- 
trum E~'(Tc)= V 2 Ikll-~'~,~(lkl) is integrable for e with - ~  < e < 2 ,  by 
the Riemann Lebesgue Lemma, S'(Ixl/2) converges to 2(Iv=12(0)); thus, 
as 2--+ 0, Qa converges to the Gaussian fundamental solution of the heat 
equation with the diffusion coefficient 2x + 2(Iv=l 2(0)). Thus, in the mean- 
field regime for e with - c ~  < e < 2, the large-scale renormalized behavior 
is universal and Gaussian. 

4.1.2. The Anomalous Regime: 2 < ~ < 4 .  In the anomalous 
regime, I concentrate on an extremely special but instructive case with 
ir and ~ ( I k l ) -  1 and an isotropic initial distribution for the second- 
order scalar correlations Qo(Ixl, t). There are new phenomena in this 
regime involving the finite effects of x ~ 0  and r  ~ I which are subtle 
and described elsewhere3 TM With all these assumptions, in the high- 
Reynolds-number limit, for e with 2 <e  <4,  it follows from (17) and (27) 
that S~(Ixl) converges to D, )xl "-  2 as 6-* 0; furthermore, it can be justified 
rigorously t13"~61 that Q~(Ixl, t) converges in the high-Reynolds-number 
limit to Q(IxJ, t) which satisfies the degenerate forward diffusion equation 

&a(Ixl, 
t ) - o~d ( I x l ' - 2Q( l x l ,  t)), Q(Ixl, t)l,=o=Qo(Ixl) (28) 

c3t 

Note that 0(Ixl, t )=  Ixl~-ZQ(lxl, t) formally satisfies the adjoint backward 
equation related to (28). In radial coordinates this backward diffusion 
equation is given by 

OQ*(r, t) l - a  d [ a- i d , ) 
~t D~r ~- --~rkr -~r Q (r, t) , r > 0 ,  t > 0  (29) 

It is readily checked that for the operator in (29), r = 0  is an entrance 
boundary and r =  + ~  is an exit boundary for 2 < e < 4  according to 
Feller's classification of singular diffusions; (lsl furthermore, the coefficients 
are non-exploding at r =  ~ for 2 <e  <4.  (161 Thus, Eq. (29) has solutions 
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that exist and vanish rapidly for any rapidly decreasing smooth initial data; 
furthermore, the solutions of (29) form a strongly continuous contraction 
semigroup on C0([0, ~ ) ) ,  the continuous functions vanishing at infinity, 
with a natural domain of definition for the generator. ~16'~8) Also, the reader 
can verify that (28) has the explicit radial similarity solution for 2 < e < 4, 

~)~(r, t)= (D~t)-d/~4-~) F~ (.(D~t~t/14_~) ) (30) 

with 
[ - - r  4-~ 

F~(r) = r 2-" - -  C, exp ~(4_e)2  ) 

and C~ a normalizing constant chosen so that l =  C~Ad_ ~ r d- IF(r)dr. 
Note that in the limit as e ~ 2, this solution reduces to a Gaussian distribu- 
tion as in the mean-field regime. 

With the preliminaries in (28)-(30), finally I discuss briefly the univer- 
sal inertial range renormalization theory. Consider the anomalous scaling 
for 2 < e < 4 ,  

Q~(IxI, t)= 2_aQ (I~ I t )  , ;/-_, (31) 

I claim that in the inertial range scaling limit 2--, 0 for any t > 0 

Q;'(Ixl, t) converges to 0~(Ixl, t) (32) 

where the convergence is weak convergence of measures in R d. Thus, the 
universal probability distribution characterizing the renormalized second- 
order scalar statistics is the non-Gaussian distribution in (30) in the 
anomalous regime 2 < e < 4. The proof of (32) involves an adjoint integra- 
tion by parts argument utilizing the backward equation ~3~ and careful use 
of two facts: (1) 0 is an entrance boundary in Feller's classification, so 
certain functions and appropriate normal derivatives a priori Ita~ have a 
well-defined limit as r --+ 0 for functions in the domain of the generator for 
(29); (2) solutions of (28) inherit similar properties as in fact I because 
Q(r, t)=r~-2Q(r, t) satisfies (29) i f  Q(r, t) satisfies (28). These two facts 
are crucial in treating this singular diffusion problem and are the source of 
new phenomena for x > 0 and ~'o~(Ikl) ~- 1 in the general case. The detailed 
argument and generalizations are presented elsewhere, t13"~4~ 

5. CONCLUDING REMARKS 

Equation (28) together with the fundamental solution in (30) provide 
a rigorous derivation of properties of equations for the second-order scalar 

822/75/5-6-25 
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correla t ions  initially suggested by Richardson;  ('9) recently, in o ther  work 
Kra ichnan  (-'~ has noted the same equat ion  as (28) for second-order  scalar  
correlat ions.  It is also worth ment ioning that  in the anomalous  regime, the 
universal behavior  of the second-order  correla t ions  expressed by O~ from 
(30) is invar iant  under  the anomalous  scaling group  (x, t) --* (x/2,  t /24-~),  

while the equat ion for the mean statistics from (25) is not  scale invar iant  
in the anomalous  regime 2 < e < 4. Thus, the renormal ized mean statistics 
are not  scale invariant ,  but  the h igher-order  statistics are au tomat ica l ly  
scale invar iant  with anomalous  scaling. This renormal ized  behavior  is to be 
expected and has been demons t ra ted  r igorously  in two other  simplified 
aniso t ropic  models  (6-8) besides the isotropic  model  discussed here. Unfor-  
tunately,  the lack of  scale invar iance for the mean statist ics has led some 
authors  (2t) to claim, in cont rad ic t ion  to the r igorous  renormal iza t ion  for 
h igher-order  statistics, (~'8) that  these problems  are not  renormal izable ;  
those au thors  (2') have artificially restored scale invar iance for the mean 
statistics through nonphysical  t ime-dependent  cutoffs, These mat ters  are 
discussed in detail  in refs. 6 and 8. 
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